7 research outputs found

    How Do Executive Functions Influence Children’s Reasoning About Counterintuitive Concepts in Mathematics and Science?

    Get PDF
    Many scientific and mathematical concepts are counterintuitive because they conflict with misleading perceptual cues or incorrect naive theories that we build from our everyday experiences of the world. Executive functions (EFs) influence mathematics and science achievement, and inhibitory control (IC), in particular, might facilitate counterintuitive reasoning. Stop & Think (S&T) is a computerised learning activity that trains IC skills. It has been found effective in improving primary children’s mathematics and science academic performance in a large scale RCT trial (Palak et al., 2019; Wilkinson et al., Journal of Cognitive Enhancement, 4, 296–314, 2020). The current study aimed to investigate the role of EFs and the moderating effects of S&T training on counterintuitive mathematics and science reasoning. A sample of 372 children in school Years 3 (7- to 8-year-olds) and 5 (9- to 10-year-olds) were allocated to S&T, active control or teaching as usual conditions, and completed tasks assessing verbal and visuospatial working memory (WM), IC, IQ, and counterintuitive reasoning, before and after training. Cross-sectional associations between counterintuitive reasoning and EF were found in Year 5 children, with evidence of a specific role of verbal WM. The intervention benefited counterintuitive reasoning in Year 3 children only and EF measures were not found to predict which children would most benefit from the intervention. Combined with previous research, these results suggest that individual differences in EF play a lesser role in counterintuitive reasoning in younger children, while older children show a greater association between EFs and counterintuitive reasoning and are able to apply the strategies developed during the S&T training to mathematics and science subjects. This work contributes to understanding why specifically the S&T intervention is effective. This work was preregistered with the ISRCTN registry (TRN: 54726482) on 10/10/2017

    Have I grooved to this before? Discriminating practised and observed actions in a novel context

    Get PDF
    Learning a new motor skill typically requires converting actions observed from a third-person perspective into fluid motor commands executed from a first-person perspective. In the present study, we test the hypothesis that during motor learning, the ability to discriminate between actions that have been observed and actions that have been executed is associated with learning aptitude, as assessed by a general measure of physical performance. Using a multi-day dance-training paradigm with a group of dance-naĂŻve participants, we investigated whether actions that had been regularly observed could be discriminated from similar actions that had been physically practised over the course of three days, or a further set of similar actions that remained untrained. Training gains and performance scores at test were correlated with participants' ability to discriminate between observed and practised actions, suggesting that an individual's ability to differentiate between visual versus visuomotor action encoding is associated with general motor learning

    Identifying Behavioural and Neural Indices of Sensorimotor Experience Among Young Adults and Adolescents

    No full text
    The ability to encode kinematic information related to observed actions is often an important aspect of sporting as well as artistic performance. However, differences in performers’ action experience could potentially guide how these individuals are able to perceive actions. Moreover, the ability to encode sensorimotor differences in the way actions have been experienced may be particularly relevant for complex motor learning involving the acquisition of intransitive actions. To investigate this possibility, a behavioural study was conducted to examine whether individuals can explicitly identify their own action experiences with whole-body actions following a period of differentiated sensorimotor training. Participants were simply asked to identify whether specific actions had been physically experienced, observed, or untrained during a week of prior training. The ability to predict an individual’s overall performance fidelity for these movements using scores on the categorisation task suggests the ability to distinguish sensorimotor information related to action experience may be associated with an individual’s ability to benefit from a motor training paradigm. In addition, we wished to examine whether specific neural indices could be used to distinguish between perceived actions based on the prior experience of an observer. Recent 14 findings from neuroimaging suggest that the ability to perceive observed actions is related to the functioning of a network of regions known as the Action Observation Network. However, both increased as well as reduced levels of action experience have been associated with increased activity within these regions. The apparent conflict within this literature may be driven by the differences in methodology used to assess engagement within this network. Namely, action features such as intent, overall expertise, and visual identity, may be some of the factors that influence this engagement alongside individual experience. As such, a primary goal of this work was to investigate whether these regions encode differences in experience when observing actions in a format that emphasises differences in kinematics above other features. Overall, patterns of voxel activity within the adult AON did appear to discriminate between different forms of experience in the relative absence of magnitude based differences due to experience. These patterns may reflect how frequently observed actions are encoded primarily using visuospatial information within regions of the brain responsible for processing visual information related to moving bodies, while actions that have also been physically experienced may benefit from sensorimotor feedback leading to visuomotor integration. Although the interaction between motor learning and action perception has been addressed during infancy, the impact of experience on action perception has received limited attention during other periods of rapid developmental change, which may have variable implications for motor learning during these periods. Given that various hormonal, behavioural, and neural changes accompany adolescence, the ability to anticipate the actions of others may be influenced in a different form as higher-level sensorimotor cortices continue to mature into adulthood. In this case, we did not find that sensorimotor experience was related to the magnitude of AON engagement among adolescents, nor did we find strong 15 evidence for patterns of AON voxel activity that could differentiate between different types of sensorimotor experience. However, voxel activity in the caudate nucleus that could be used to discriminate between physically trained and observed actions within this group suggest that activity within this region could influence action perception during this period. In addition, heightened discriminability of sensorimotor experience based on voxel patterns within higher-level sensorimotor cortices was found among adults compared to adolescents. This finding suggests that increased maturity within higher-level sensorimotor cortices could influence how action perception is affected by experience and that adolescents may rely on lower-level visuospatial encoding of movements to perceive actions. Overall, these studies shed new light on how action perception is shaped through experience while informing theories of action perception in contexts involving complex and intransitive actions. Further work in this field should ultimately seek to address how specific indices of sensorimotor experience may be related to motor learning potential, as well as examining whether these indices are domain-general or specific to an individual’s own action expertise. Gaining deeper insight to perceiving the actions of others could ultimately benefit training paradigms across a variety of educational and rehabilitative contexts

    Identifying Behavioural and Neural Indices of Sensorimotor Experience Among Young Adults and Adolescents

    No full text
    The ability to encode kinematic information related to observed actions is often an important aspect of sporting as well as artistic performance. However, differences in performers’ action experience could potentially guide how these individuals are able to perceive actions. Moreover, the ability to encode sensorimotor differences in the way actions have been experienced may be particularly relevant for complex motor learning involving the acquisition of intransitive actions. To investigate this possibility, a behavioural study was conducted to examine whether individuals can explicitly identify their own action experiences with whole-body actions following a period of differentiated sensorimotor training. Participants were simply asked to identify whether specific actions had been physically experienced, observed, or untrained during a week of prior training. The ability to predict an individual’s overall performance fidelity for these movements using scores on the categorisation task suggests the ability to distinguish sensorimotor information related to action experience may be associated with an individual’s ability to benefit from a motor training paradigm. In addition, we wished to examine whether specific neural indices could be used to distinguish between perceived actions based on the prior experience of an observer. Recent 14 findings from neuroimaging suggest that the ability to perceive observed actions is related to the functioning of a network of regions known as the Action Observation Network. However, both increased as well as reduced levels of action experience have been associated with increased activity within these regions. The apparent conflict within this literature may be driven by the differences in methodology used to assess engagement within this network. Namely, action features such as intent, overall expertise, and visual identity, may be some of the factors that influence this engagement alongside individual experience. As such, a primary goal of this work was to investigate whether these regions encode differences in experience when observing actions in a format that emphasises differences in kinematics above other features. Overall, patterns of voxel activity within the adult AON did appear to discriminate between different forms of experience in the relative absence of magnitude based differences due to experience. These patterns may reflect how frequently observed actions are encoded primarily using visuospatial information within regions of the brain responsible for processing visual information related to moving bodies, while actions that have also been physically experienced may benefit from sensorimotor feedback leading to visuomotor integration. Although the interaction between motor learning and action perception has been addressed during infancy, the impact of experience on action perception has received limited attention during other periods of rapid developmental change, which may have variable implications for motor learning during these periods. Given that various hormonal, behavioural, and neural changes accompany adolescence, the ability to anticipate the actions of others may be influenced in a different form as higher-level sensorimotor cortices continue to mature into adulthood. In this case, we did not find that sensorimotor experience was related to the magnitude of AON engagement among adolescents, nor did we find strong 15 evidence for patterns of AON voxel activity that could differentiate between different types of sensorimotor experience. However, voxel activity in the caudate nucleus that could be used to discriminate between physically trained and observed actions within this group suggest that activity within this region could influence action perception during this period. In addition, heightened discriminability of sensorimotor experience based on voxel patterns within higher-level sensorimotor cortices was found among adults compared to adolescents. This finding suggests that increased maturity within higher-level sensorimotor cortices could influence how action perception is affected by experience and that adolescents may rely on lower-level visuospatial encoding of movements to perceive actions. Overall, these studies shed new light on how action perception is shaped through experience while informing theories of action perception in contexts involving complex and intransitive actions. Further work in this field should ultimately seek to address how specific indices of sensorimotor experience may be related to motor learning potential, as well as examining whether these indices are domain-general or specific to an individual’s own action expertise. Gaining deeper insight to perceiving the actions of others could ultimately benefit training paradigms across a variety of educational and rehabilitative contexts

    Dance Training Shapes Action Perception and Its Neural Implementation within the Young and Older Adult Brain

    No full text
    How we perceive others in action is shaped by our prior experience. Many factors influence brain responses when observing others in action, including training in a particular physical skill, such as sport or dance, and also general development and aging processes. Here, we investigate how learning a complex motor skill shapes neural and behavioural responses among a dance-naïve sample of 20 young and 19 older adults. Across four days, participants physically rehearsed one set of dance sequences, observed a second set, and a third set remained untrained. Functional MRI was obtained prior to and immediately following training. Participants’ behavioural performance on motor and visual tasks improved across the training period, with younger adults showing steeper performance gains than older adults. At the brain level, both age groups demonstrated decreased sensorimotor cortical engagement after physical training, with younger adults showing more pronounced decreases in inferior parietal activity compared to older adults. Neural decoding results demonstrate that among both age groups, visual and motor regions contain experience-specific representations of new motor learning. By combining behavioural measures of performance with univariate and multivariate measures of brain activity, we can start to build a more complete picture of age-related changes in experience-dependent plasticity.ISSN:2090-5904ISSN:1687-544

    Watch and learn: Mapping the behavioural and neural profile of observational learning throughout the lifespan

    No full text
    As humans, our ability to survive within a social world is facilitated by learning through observing others. As such, when learning tasks as simple as tying one's shoes or as complex as performing heart surgery, we learn by watching from childhood through to old age. Many researchers from the behavioural and brain sciences suggest that observational and physical learning share common features. What remains unknown is how our brains and behaviour change when learning by observation across the lifespan, as well as how age impacts the efficacy of observational learning. To address these questions, I measure the impact of observational learning on behaviour and brain activity among children, young adults, and older adults. The ultimate aim is to develop a means of identifying factors associated with observational learning success, which in turn will inform observation-based interventions used in education and therapeutic contexts
    corecore